Search results for "Riemann sphere"

showing 5 items of 5 documents

Multidomain spectral method for the Gauss hypergeometric function

2018

International audience; We present a multidomain spectral approach for Fuchsian ordinary differential equations in the particular case of the hypergeometric equation. Our hybrid approach uses Frobenius’ method and Moebius transformations in the vicinity of each of the singular points of the hypergeometric equation, which leads to a natural decomposition of the real axis into domains. In each domain, solutions to the hypergeometric equation are constructed via the well-conditioned ultraspherical spectral method. The solutions are matched at the domain boundaries to lead to a solution which is analytic on the whole compactified real line R∪∞, except for the singular points and cuts of the Rie…

Singular differential equationsMathematics::Classical Analysis and ODEsRiemann sphere[MATH] Mathematics [math]010103 numerical & computational mathematics01 natural sciencessymbols.namesakeFOS: MathematicsHypergeometric functionMathematics - Numerical Analysis[MATH]Mathematics [math]0101 mathematicsHypergeometric functionQAMathematicsLaplace's equationApplied MathematicsRiemann surfaceMathematical analysisNumerical Analysis (math.NA)[MATH.MATH-NA] Mathematics [math]/Numerical Analysis [math.NA]Hypergeometric distribution010101 applied mathematicsSpectral methodsHarmonic functionOrdinary differential equationsymbolsSpectral method[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA]Numerical Algorithms
researchProduct

New construction of algebro-geometric solutions to the Camassa-Holm equation and their numerical evaluation

2011

An independent derivation of solutions to the Camassa-Holm equation in terms of multi-dimensional theta functions is presented using an approach based on Fay's identities. Reality and smoothness conditions are studied for these solutions from the point of view of the topology of the underlying real hyperelliptic surface. The solutions are studied numerically for concrete examples, also in the limit where the surface degenerates to the Riemann sphere, and where solitons and cuspons appear.

Surface (mathematics)General MathematicsFOS: Physical sciencesGeneral Physics and AstronomyRiemann sphereTheta function01 natural sciences010305 fluids & plasmassymbols.namesake[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]0103 physical sciencesLimit (mathematics)0101 mathematics[MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph]Shallow water equationsNonlinear Sciences::Pattern Formation and SolitonsMathematical PhysicsMathematicsSmoothnessCamassa–Holm equationNonlinear Sciences - Exactly Solvable and Integrable Systems010102 general mathematicsMathematical analysisGeneral Engineering[ MATH.MATH-MP ] Mathematics [math]/Mathematical Physics [math-ph]Mathematical Physics (math-ph)Nonlinear Sciences::Exactly Solvable and Integrable SystemssymbolsExactly Solvable and Integrable Systems (nlin.SI)Hyperelliptic surfaceProc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 468 (2012), no. 2141, 1371–1390
researchProduct

Surface homeomorphisms with zero dimensional singular set

1998

We prove that if f is an orientation-preserving homeomorphism of a closed orientable surface M whose singular set is totally disconnected, then f is topologically conjugate to a conformal transformation.

Surface (mathematics)Pure mathematics[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS][ MATH.MATH-DS ] Mathematics [math]/Dynamical Systems [math.DS]Conformal mapDynamical Systems (math.DS)01 natural sciencesKérékjártós theorySet (abstract data type)Totally disconnected spaceRegular homeomorphisms0103 physical sciencesFOS: Mathematics54H20; 57S10; 58FxxRiemann sphereMathematics - Dynamical Systems0101 mathematicsMathematics - General TopologyMathematics010102 general mathematicsGeneral Topology (math.GN)Zero (complex analysis)Applications conformesHomeomorphismHoméomorphismes des surfacesApplications conformes.Transformation (function)Limit set010307 mathematical physicsGeometry and Topology54H20 (Primary) 57S10 (Secondary) 58Fxx (Secondary)Topological conjugacy
researchProduct

Integrable Systems and Factorization Problems

2002

The present lectures were prepared for the Faro International Summer School on Factorization and Integrable Systems in September 2000. They were intended for participants with the background in Analysis and Operator Theory but without special knowledge of Geometry and Lie Groups. In order to make the main ideas reasonably clear, I tried to use only matrix algebras such as $\frak{gl}(n)$ and its natural subalgebras; Lie groups used are either GL(n) and its subgroups, or loop groups consisting of matrix-valued functions on the circle (possibly admitting an extension to parts of the Riemann sphere). I hope this makes the environment sufficiently easy to live in for an analyst. The main goal is…

[NLIN.NLIN-SI] Nonlinear Sciences [physics]/Exactly Solvable and Integrable Systems [nlin.SI]Loop algebraNonlinear Sciences - Exactly Solvable and Integrable SystemsIntegrable system010102 general mathematicsFOS: Physical sciencesRiemann sphereMotion (geometry)Lie group01 natural sciencesAlgebrasymbols.namesakePoisson bracketFactorization0103 physical sciencesLie algebrasymbols[NLIN.NLIN-SI]Nonlinear Sciences [physics]/Exactly Solvable and Integrable Systems [nlin.SI]Exactly Solvable and Integrable Systems (nlin.SI)0101 mathematics010306 general physics[ NLIN.NLIN-SI ] Nonlinear Sciences [physics]/Exactly Solvable and Integrable Systems [nlin.SI]Mathematics
researchProduct

MR 2831984 Reviewed Masuda T. Families of finite coverings of the Riemann sphere. Osaka J. Math. 48 (2011), no. 2, 515--540. (Reviewer Francesca Vetr…

2012

Let $G$ be a finite group and let $H$ be a subgroup of $G$ which does not contain normal subgroups of $G$ except $\{ id \}$. The group $G$ acts on the set of the left coset of $G / H$ as follows: \begin{center} $(g, H a) \rightarrow H a g^{- 1}$. \end{center} The author observes that the action defined above is effective and this gives a permutation representation of $G$, $R: G \rightarrow S_{d}$, where $d =[G : H]$. The condition on $H$ ensures that $R$ is injective. Thus, $G$ can be seen as a transitive subgroup of $S_{d}$. Let $X$ and $ Y$ be connected complex varieties. A finite covering $f: X \rightarrow Y$, which branches at most at $B$, is said a $(G, H)-$coverings if there is a surj…

finite coverings Riemann sphere.Settore MAT/03 - Geometria
researchProduct